If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-14y-7=0
a = 2; b = -14; c = -7;
Δ = b2-4ac
Δ = -142-4·2·(-7)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{7}}{2*2}=\frac{14-6\sqrt{7}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{7}}{2*2}=\frac{14+6\sqrt{7}}{4} $
| 3x-8+17x=32 | | 3x715.2=1+3x | | 5^2+6x+3=0 | | 2/3d=4/9 | | .25=2.5x | | 2.3x+4.2=8.8 | | u^2+u+28=0 | | 2y+50=y+150 | | 2n/5=80/20 | | 3(y-2)/5=-2 | | 10x-6=45 | | .5c+3.49-(2c)=4 | | -2x+3+5x=2x | | f2–6f+9=0 | | x^2+(x^2+4x+4)=100 | | -34=56+18x | | 8+5x10=0 | | -5(2x-6)+3x=72 | | (4+a)/7=1 | | 2*6x-19=10x-12 | | 4(c-5)=2c-20 | | 170=10a | | 2(x+3)-7x=6x | | (1/8)÷1/24=x | | -5d-6=4 | | 1.4=1.6(t+6)=4.6 | | 2/5q=10 | | 2x-7+4x=x-8-5x | | 6/5•n=60 | | .5c+3.49+(-2c)=4 | | x-8-5x=-2x+3-x | | t+83.55=107.4 |